ION-INDUCED CONFORMATIONAL CHANGES IN KEMP'S TRIACID F. M. Menger^{*}, Paige A. Chicklo, and Michael J. Sherrod Department of Chemistry, Emory University, Atlanta, Georgia 30322

 $Summary:$ NMR and MACROMODEL/molecular dynamics calculations show that Mg^{++} can convert Kemp's triacid (trianionic form) from a chair into a half-chair conformation.

Owing to current research activity with Kemp's triacid $(1)^{1,2,3}$, and to its recent commercial availability,⁴ we decided to explore the conformational behavior of the compound. Proton NMR and MACROMODEL/molecular dynamics⁵ provided information on conformational changes within the triacid when the pH and ion content of aqueous solutions were systematically varied.

Kemp and Petrakis¹ have already reported that the nonequivalent methylene protons of I have widely divergent chemical shifts (1.2 and 2.6 ppm). The NMR spectrum was best accomodated by a triaxial orientation of the carboxyl groups, a conclusion later confirmed by X-ray analysis.⁶ When I was converted into the trianionic state, the methylene resonances moved much closer together (i.e. to a separation similar to that of 1,3,5 cyclohexanetricarboxylate), indicating that 1 flips into a triequatorial-CO₂-Ariaxial-CH₃ configuration. Electrostatic repulsion obviously predominates here over the usual preference for a carbonyl to assume an axial position relative to a methyl group.

Figure 1 gives the chemical shift separation (A) as a function of pH.⁷ The plot is consistent with the Kemp and Petrakis data showing that full ionization of 1 (pK_a's = 3.3, 5.9, and 7.3)¹ is required for the conformational flip. We next added metal salts to 1 (D₂O, pD \geq 9.5) in order to determine if metal association can stabilize 1.3,5-triaxial carboxylates and, consequently, drive I back into the "low pH" configuration. Our results are summarized below.

Aaure 1, Difference in chemical shifts (**A) between methylene protons of Kemp's triacid as a function of pD. Runs were carried out with 0.01 M triacid In D20 on a GE QE-300 NMR spectrometer.**

Figure 2. Difference in chemical shifts (\triangle) between geminal methylene protons of 0.01 M Kemp's triacid in D₂O vs. molar excess of added MgCl₂ or NaCl. The pD was adjusted to 9.9 ± 0.3 **without the use of an inorganic buffer.**

Figure 3. Geometries and relative steric energies of the three conformational minima of Kemp's triacld trianlon as found by MACROMODEL. Distances are in angstroms.

w4. Half-chair conformation as found by MACROMODEL. Arrows point to carboxylate carbons.

(A) Figure 2 proves that the trianion of 1 experiences a major conformational change in the presence of a >10 -fold molar excess of MgCl₂. (B) In contrast, no change in Δ was observed when 1.3.5cyclohexanetricarboxylate acid trianion was mixed with a 100-fold excess of MgC12. Thus, relief of strain among axial methyls of I is necessary for the carboxylates to move out of their equatorial positions in the presence of MgCl2. (C) As seen in Figure 2, NaCI has a much smaller effect than does MgCl₂. At an extremely high INaCII of 3.4 M, Δ does increase from 0.33 to 0.71 ppm, indicating an enhanced axial-CO₂⁻ population. It is unclear whether this represents sodium complexation or a nonspecific "ion atmosphere" effect. (D) Related studies with CaCl₂ were unsuccessful owing to precipitate formation. In one spectrum with a 100-fold excess CaCl2 (taken before solid fell from solution) we found that $\Delta = 1.8$ ppm, a value even greater than that for 1 at low pH. (E) Diacid corresponding to 1 (i.e. lacking the third CH3/COOH at carbon-5) was shown to have an identical A/MgCl2 profile as does I. Hence, two axial carboxylate units suffice for Mg⁺⁺ interactions. Since it was surprising to us that a third carboxylate does not enhance association with Mg+', we carried out MACROMODEL calculations to explore theoretically the conformations of trianionic I.

MACROMODEL readily disclosed two energy minima (Figure 3), namely a triequatorial-CO₂⁻ (E_{ref} = 0.00 kcal/mol) and a triaxial-CO₂⁻ (E_{rel} = 24.4 kcal/mol). Molecular dynamics, however, was able to dislodge the structure from the triaxial-CO₂⁻ local minimum, resulting in the discovery of a third conformation: a half-chair (E_{ret} = 8.1) kcal/mol) depicted in Figure 4. We surmise that in solution the trianion of I exists as the equatorial-CO₂, but when MgCl2 is added the molecule transforms into the half-chair where two axial carboxylates associate with the metal. A third carboxylate remains equatorial and contributes little to the ionic interactions (in agreement with the NMR experiments). Owing to methyl group equivalence in the NMR, the half-chair must pseudo-rotate freely at 25°C with the Mg⁺⁺ ion hopping rapidly among the carboxylates.

Acknowledgment. This work was supported by the National Science Foundation,

References.

- 1. Kemp, D. S.; Petrakis, K. S. J. Org. Chem. 1981, 46, 5140.
- 2. Rebek, J. Jr.; Askew, B.; Ballester, P.; Doa, M. J. Am. Chem. Soc. 1987, 109, 4119.
- 3. Menger, F. M.; Ladika, M. J. Am. Chem. Soc. 1988, 110, 6794.
- 4. Aldrich Chemical Co.
- 5. MACROMODEL, Version 2.5, W. Clark Still, Columbia University.
- 6. Rebek, J. Jr.; Marshall, L.; Wolak, R.; Parris, K.; Killoran, M.; Askew, B.; Nemeth, D.; Islam, N. J. Am. Chem. Soc. 1985, 107, 7476.
- 1. Solutions (with added HCI or NaOH) were buffered only by the solute to minimize the counterion concentration.

(Received in USA 18 August 1989)